



## NEUBAU TWKW STEINDORF WEST

Vorprojekt - Trinkwasserkraftwerk Steindorf West

KPC-Beratungsnummer: KC419717



## **Auftraggeber:**

Gemeinde Steindorf 10. Oktober Straße 1 9551 Bodensdorf



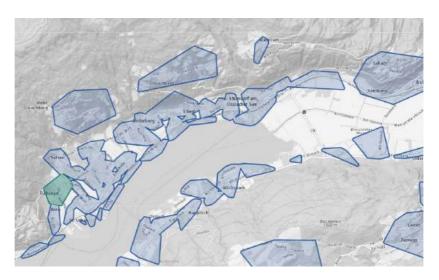
## INHALTSVERZEICHNIS

| 1. ALLGEMEIN                                                            |
|-------------------------------------------------------------------------|
|                                                                         |
| 1.1. KONSENSINHABER                                                     |
| 1.2. GEGENSTAND                                                         |
| 1.3. LAGE                                                               |
| 1.4. UNTERLAGEN                                                         |
| 2. BEFUND                                                               |
| 2.1. ANLAGENBESCHREIBUNG                                                |
| 2.2. ÖKOLOGISCHE GRUNDLAGEN13                                           |
| 2.3. HYDROLOGISCHE GRUNDLAGEN14                                         |
| 2.4. HYDRAULISCHE GRUNDLAGEN15                                          |
| 3. KRAFTWERKSPROJEKT17                                                  |
| 3.1. UMSETZUNGS-MABNAHMEN17                                             |
| 3.2. ENGPASSLEISTUNG NACH UMSETZUNG25                                   |
| 3.3. REGELARBEITSVERMÖGEN NACH UMSETZUNG 25                             |
| 3.4. FESTSTELLUNG DER ENGPASS-LEISTUNG UND DES REGELARBEITS-VERMÖGENS27 |
| 3.5. SCHLUSSFOLGERUNG27                                                 |
| 3.6. FÖRDERMÖGLICHKEITEN UND WIRTSCHAFTLICHKEIT28                       |
| 4 DER PROJEKTANT                                                        |



## 1. ALLGEMEIN

#### 1.1. KONSENSINHABER


Gemeinde Steindorf

10. Oktober Straße 1

9551 Bodensdorf

#### 1.2. GEGENSTAND

Die Gemeinde Steindorf nützt u.a. die Hirschlacken-, Stofflund Ochsenbachquellen seit 1962. Der Konsensinhaber will die bestehende Gemeindewasserversorgungsanlage Steindorf West It. Wasserbuch Post 210/416 im Sinne des EAG durch Errichtung einer Trinkwasserkraftwerksanlage zusätzlich zur Stromproduktion nutzen. Die produzierte Strommenge wird als Überschußeinspeiser mittels niederspannungsseitiger 4-Quadrantenzählung am bestehenden Zählpunkt in das Netz der Kärnten Netz GmbH eingespeist. Zusätzlich soll für die Stromverwertung eine regionale Energiegemeinschaft im folgenden Bereich gegründet werden:





#### 1.3. LAGE

Anlagenbereich (Wasserkraftanlage):

Quellsammelstube Stoffl-Mathiasl

• Grundstück: 713/2

• Katastralgemeinde: 72324 Ossiachberg

· Gemeinde: Steindorf

Krafthaus Entsäuerungsanlage VZ West Mitte

Grundstück: 88

• Katastralgemeinde: 72338 Stiegl

• Gemeinde: Steindorf

Betroffener Teil der bestehenden Wasserversorgungsanlage GWVA Steindorf:









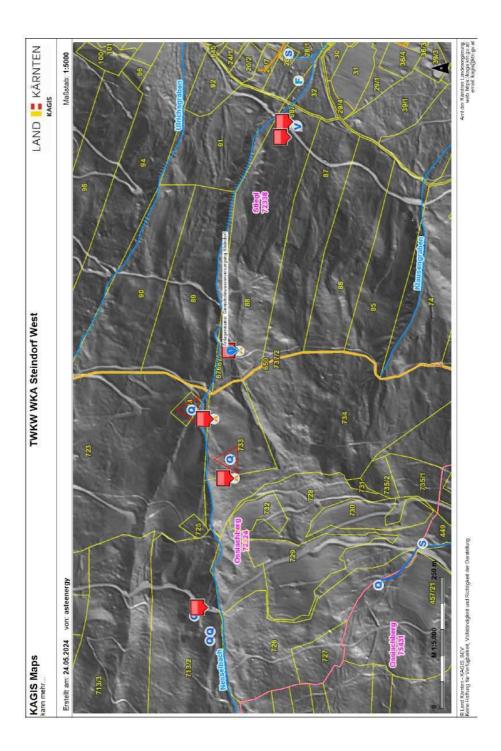



ABBILDUNG 1: ANLAGENBEREICH UND GELÄNDE LT. KAGIS



#### 1.4. UNTERLAGEN

Folgende Unterlagen wurden zur Erstellung des Gutachtens verwendet:

- 1. Technische Unterlagen
- Quellschüttungsmessungen 2023/2024
- Planunterlagen zu Entsäuerungsanlage, Planskizzen zu Quellstube
- 2. Bescheide
- Wasserbuchauszug Post 210/416
- 3. Begehung vor Ort am 23.5.2024



## 2. BEFUND

## 2.1. ANLAGENBESCHREIBUNG

Beschreibung Quell-Einlaufbauwerk:

| TWKW Steindorf    |                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------|
| Wassereinzug über | Quellsammelstube                                                                                        |
| Rechenanlage      | keine                                                                                                   |
| Entsandung        | keine                                                                                                   |
| Entlüftung        | Über Druckvernichter                                                                                    |
| Pegel             | keiner, keine Datenübertra-<br>gung zu Hochbehälter                                                     |
| Zustand           | Quellsammelstube saniert,<br>Quellableitung nach Stube<br>kann Wassermenge nicht zur<br>Gänze aufnehmen |









ABBILDUNG 2: QUELLSTUBE STEINDORF



### Beschreibung Quellableitung:

| TWKW Steindorf         |                         |
|------------------------|-------------------------|
| Material               | PVC                     |
| Baujahr                | Vermutlich 1962         |
| Durchmesser            | DN 100                  |
| Länge                  | 1093 m                  |
| Verlegung              | erdverlegt              |
| Anzahl Druckvernichter | 4                       |
| Beschaffenheit         | Dzt. kein Wasserverlust |
|                        | durch Leckagen          |









ABBILDUNG 3: QUELLABLEITUNG QUELLSAMMELSTUBE STOFFL-MATHIASL,
ÜBERWASSERABWURF AN QUELLSAMMELSTUBE, BESCHAFFENHEIT DRUCKVERNICHTER



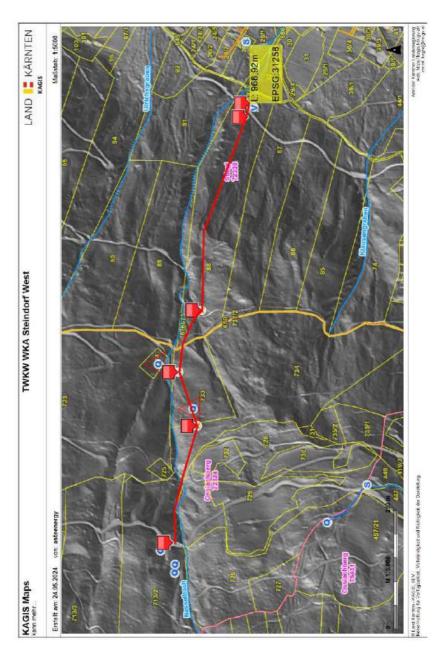



ABBILDUNG 4: LEITUNGSFÜHRUNG QUELLABLEITUNG MIT QUELLSAMMELSTUBE,

DRUCKVERNICHTER UND ENTSÄUERUNGSANLAGE



## 2.2. ÖKOLOGISCHE GRUNDLAGEN

| Gewässer                                                             |                     |
|----------------------------------------------------------------------|---------------------|
| Wasserkörpernummer                                                   | Keine Nummer        |
| Name                                                                 | Nesselbach          |
| Fischregion                                                          | Kein Fischlebenraum |
| Ökologisch wertvolle Gewässerstrecken (gem. § 56a Abs. 1 Z 1 EAG)    | Nein                |
| Schutzgebiet (FFH, Vogel-<br>schutz, Natura 4000, Natio-<br>nalpark) | Nein                |
| Fischpassierbarkeit                                                  | Nein                |
| NGP-Zielerreichung                                                   | k.A.                |
| Pflichtwasserabgabe                                                  | keine               |



ABBILDUNG 5: STEILABFALL NESSELBACH



#### 2.3. HYDROLOGISCHE GRUNDLAGEN

Am Zulauf Quellsammelstube Stoffl-Mathiasl zur Entsäuerungsanlage VZ West Mitte wird die Quellschüttung monatlich gemessen und aufgezeichnet:

| Quelle/Messung  | Max  | Dez 23 | Nov 23 | Okt 23 | Aug 23 | Jun 23 | Mai 23 | Apr 24 | Mrz 23 | Feb 24 | Jan 23 | Min [l/s] |
|-----------------|------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|
| Ochsenbach I    | 6,5  | 4,5    | 5,0    | 3,9    | 4,6    | 6,5    | 6,3    | 4,4    | 2,7    | 1,9    | 2,1    | 1,9       |
| Ochsenbach II   | 3,5  | 2,6    | 2,3    | 1,6    | 3,0    | 3,5    | 2,8    | 3,3    | 1,0    | 0,8    | 0,8    | 0,8       |
| Hirschlacke I   | 8,9  | 8,9    | 2,0    | 3,7    | 8,7    | 7,2    | 7,9    | 3,8    | 3,7    | 2,8    | 2,7    | 2,0       |
| Hirschlacke II  | 6,9  | 1,4    | 6,9    | 0,9    | 1,8    | 2,1    | 1,3    | 0,9    | 0,8    | 0,8    | 0,6    | 0,6       |
| Forstquelle     | 4,0  | 0,0    | 0,0    | 0,0    | 0,0    | 0,0    | 0,0    | 0,0    | 0,0    | 0,0    | 0,0    | 0,0       |
| Koflerquelle    | 14,9 | 10,9   | 14,9   | 9,3    | 10,0   | 10,0   | 9,9    | 5,5    | 5,3    | 6,8    | 5,6    | 5,3       |
| Mathiasl        | 4,3  | 2,2    | 4,3    | 2,0    | 2,4    | 2,5    | 2,1    | 1,8    | 1,3    | 1,5    | 1,2    | 1,2       |
| Stofflquelle I  | 4,3  | 2,5    | 0,8    | 1,8    | 4,3    | 4,3    | 2,8    | 2,2    | 1,6    | 1,3    | 1,2    | 0,8       |
| Stofflquelle II | 2,6  | 0,6    | 2,6    | 0,6    | 2,2    | 1,1    | 0,9    | 0,6    | 0,8    | 0,5    | 0,7    | 0,5       |
| SUMME in I/s    | 55,9 | 33,4   | 38,7   | 23,8   | 37,0   | 37,1   | 34,0   | 22,5   | 17,2   | 16,4   | 14,9   | 13,0      |

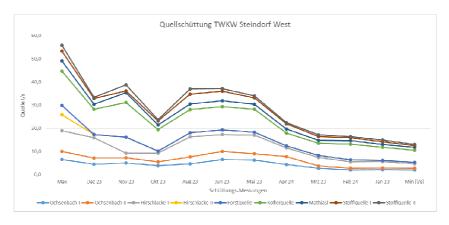



Abbildung 6: Abflussganglinie Quellsammelstube Stoffl-Mathiasl 4023/24

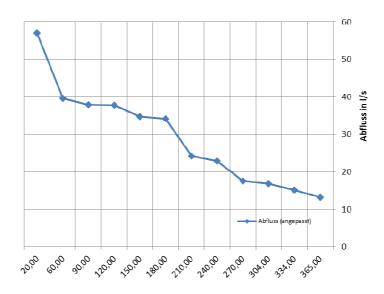



ABBILDUNG 7: ABFLUSSDAUERLINIE QUELLSAMMELSTUBE STOFFL-MATHIASL 4023/24



## 2.4. HYDRAULISCHE GRUNDLAGEN

| TWKW Steindorf                                                       |         |
|----------------------------------------------------------------------|---------|
| Konsenswassermenge Q <sub>k in I/s</sub>                             | 40      |
| Bemessungswasserspiegel Quellsammelstu-<br>be in müA                 | 1076,26 |
| Bemessungswasserspiegel Entsäuerungsan-<br>lage VZ West Mitte in müA | 616,70  |
| Turbinenachse müA                                                    | 619,80  |
| Rohfallhöhe in m                                                     | 456,46  |
| Rohrleitungslänge in m                                               | 1093    |
| Mittlerer Rohrleitungsinnendurchmesser in mm (Bestand)               | 100     |

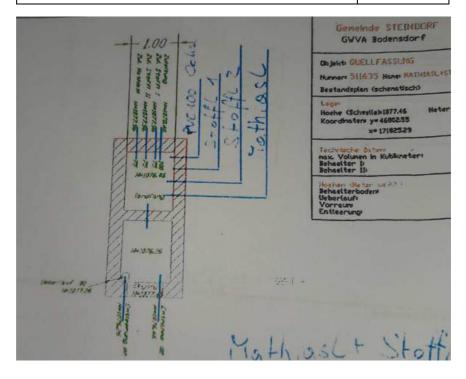


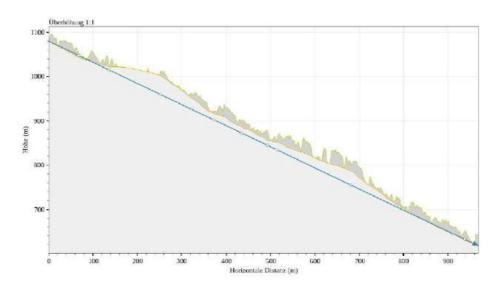





ABBILDUNG 8: PLAN QUELLSAMMELSTUBE STOFFL-MATHIASL UND ENTSÄUERUNGSANLAGE VZ WEST MITTE



## 3. KRAFTWERKSPROJEKT


## 3.1. UMSETZUNGS-MABNAHMEN

| Maßnahme 1      | Erhöhung der Nutzfallhöhe                         |  |  |  |  |  |
|-----------------|---------------------------------------------------|--|--|--|--|--|
| Ursache         | Druckverluste durch zu geringe Rohrdi-<br>mension |  |  |  |  |  |
|                 |                                                   |  |  |  |  |  |
| IST-Zustand     | Zu hoher Druckverlust mit PVC 100, Nenn-          |  |  |  |  |  |
|                 | druck für alte Leitung zu hoch                    |  |  |  |  |  |
| SOLL-Zustand    | Reduktion der Rohrrauhigkeit, Redundanz,          |  |  |  |  |  |
|                 | Nenndruck > PN 60                                 |  |  |  |  |  |
| Umsetzung       | Ersatz alte PVC-Leitung durch neue schub-         |  |  |  |  |  |
|                 | und zugsichere Druckrohrleitung Guss DN           |  |  |  |  |  |
|                 | 150, Fundamente für Kraftwerkseinbin-             |  |  |  |  |  |
|                 | dung, 4 Festpunkte, Kraftwerksunterwas-           |  |  |  |  |  |
|                 | serbecken für hydraulische Einbindung in          |  |  |  |  |  |
|                 | Bestand, Druckprobe                               |  |  |  |  |  |
| Erfolg          | RAV-Steigerung 400.000 kWh/a                      |  |  |  |  |  |
| Kostenschätzung | Ca. 300.000 (Detail-Angebot aufgrund              |  |  |  |  |  |
|                 | schwierigen Baugeländes notwendig) inkl.          |  |  |  |  |  |
|                 | hydraulische und bauliche Einbindung in           |  |  |  |  |  |
|                 | Bestandssystem                                    |  |  |  |  |  |


| Profilattribute           | DTM      | DSM      |
|---------------------------|----------|----------|
| Höhe Startpunkt           | 1079.6 m | 1080.7 m |
| Höhe Endpunkt             | 618.0 m  | 640.2 m  |
| Höhe des höchsten Punkts  | 1079.6 m | 1095.2 m |
| Höhe des tiefsten Punkts  | 618.0 m  | 620.8 m  |
| Länge der Polylinie (2D)  | 968.9 m  | 968.9 m  |
| Länge der Polylinie (3D)  | 1092.3 m | 2102.1 m |
| Durchschnittliche Neigung | -24.6°   | -13.3°   |
| Maximale Neigung          | 18.6°    | 85.2°    |
| Minimale Neigung          | -55·5°   | -84.2°   |
| Höhendifferenz Gesamt     | -461.6 m | -440.6 m |
| Höhenanstiege Gesamt      | 1.4 m    | 630.5 m  |
| Höhenabstiege Gesamt      | 463.1 m  | 1071.1 m |



## Profildarstellung



## Umgebungskarte



Grundkarte: basemap.at



| Parameter                               | Einheit             | Wert       |
|-----------------------------------------|---------------------|------------|
| Material                                | [-]                 | Guss       |
| Dimension                               | [-]                 | DN 150     |
| Innendurchmesser [D <sub>i</sub> ]      | [mm]                | 152        |
| Rauhigkeit [k]                          | [mm]                | 0,01       |
| Rohrlänge [1]                           | [m]                 | 1093       |
|                                         |                     |            |
| Medium                                  | [-]                 | Wasser     |
| Mediumtemperatur [T]                    | [°C]                | 8          |
| Dichte [ρ]                              | $[kg/m^3]$          | 1000,36    |
| kinematische Viskosität [v]             | [m <sup>2</sup> /s] | 0,00000145 |
| Durchfluss [Q]                          | $[m^3/s]$           | 0,04       |
|                                         |                     |            |
| Rohrquerschnitt [A]                     | $[m^2]$             | 0,01815    |
| Strömungsgeschwindigkeit [c]            | [m/s]               | 2,20       |
| Reynoldszahl [Re]                       | [-]                 | 2,E+05     |
| Strömungsform                           | [-]                 | turbulent  |
| relative Rauhigkeit [D <sub>i</sub> /k] | [-]                 | 15200      |
| Rohrreibungszahl [λ]                    | [-]                 | 0,025      |
| Druckverlust [Δp <sub>V</sub> ]         | [Pa]                | 436927     |
| Druckverlust [Δp <sub>V</sub> ]         | [bar]               | 4,3693     |
| Druckhöhenverlust [H <sub>V</sub> ]     | [m]                 | 44,52      |

Nach EN 545

Außenbeschichtung: - Zink 200 g/m² nach ÖNORM B 2555

- Polyurethan (PUR) min. 120 µm nach ÖNORM B 2560
| Innenbeschichtung: - Zementmörfelauskieldung nach (SO 4179 bzw. ÖNORM B 2562

Rohre zu 5 m, Kurzware zu 4,5 m und 4 m zulässig

Längskraftschlüssige Verbindung VRS<sup>®</sup>-T mit Schweißwulst am Spitzende

FM Approvals®



| DN PFA . [bar] | Maße    | [mm]               | zul. Zugkraft | Max. Abwinke- | Anzahi     | Gewicht Rohr 5 m |       |
|----------------|---------|--------------------|---------------|---------------|------------|------------------|-------|
|                | sı Guss | s <sub>2</sub> ZMA | [kN]          | lung [°]      | der Riegel | [kg] h           |       |
| 80             | 100     | 4,7                | 4             | 115           | 5          | 2                | 81,6  |
| 100            | 75      | 4,7                | 4             | 150           | 5          | 2                | 100,0 |
| 125            | 63      | 4,8                | 4             | 225           | 5          | 2                | 128,2 |
| 150            | 63      | 4,7                | 4             | 240           | 5          | 2                | 157,3 |

ABBILDUNG 9: DRUCKROHRLEITUNGSVERLAUF UND DRUCKHÖHENVERLUST FÜR DIE NEUE **DRUCKROHRLEITUNG DN 150 GUSS** 



| Maßnahme 2      | Neubau elektromaschinelle Ausrüstung                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ursache         | Neubau                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IST-Zustand     | Keine elektromaschinelle Ausrüstung vorhanden                                                                                                                                                                                                                                                                                                                                                                                     |
| SOLL-Zustand    | Hocheffiziente zweidüsige Peltonturbine mit Synchron-Generator                                                                                                                                                                                                                                                                                                                                                                    |
| Umsetzung       | trinkwassertaugliche Ausführung der Anlage, Schließ- und Öffnungszeiten am Bypass unter Berücksichtigung das kein unzulässiger Druckstoß auftritt, als Absperrorgan werden händisch betätigbare Schieber (schnell öffnender und langsam schließender Bypass) eingesetzt, kein Einstau der Quellstube durch Pegelregelung, inkl. Kraftwerks-Container am Bauwerkdach, Inselfähige Ausführung mit Aktuatorsteuerung und Schwungrad. |
| Erfolg          | RAV 500.000 kWh/a                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Kostenschätzung | € 220.000                                                                                                                                                                                                                                                                                                                                                                                                                         |

#### Technische Kenndaten der neuen Turbine:

| TWKW Steindorf             | Ist-Zustand                   |
|----------------------------|-------------------------------|
| Art                        | zweidüsige Peltonturbi-<br>ne |
| Nettofallhöhe bei Qt in m  | 420                           |
| Schluckvermögen in I/s     | 40                            |
| Nenndrehzahl: nT=[min-1]   | 1500                          |
| Max. Turbinenleistung [kW] | 150                           |
| Kraftübertragung           | direkt                        |
| Material                   | Cr-Ni-Stahl                   |



### **HYDRO** Kärnten

Projekt:

**TWKW Steindorf West** 

Gemeinde:

Steindorf



| Abschätzung Hydraulik I        | Peltonturbin         | e                        |
|--------------------------------|----------------------|--------------------------|
| Ausbauwassermenge:             | 0,040                | m³/s                     |
| Nettofallhöhe:                 | 419,62               | m                        |
| Anzahl Düsen                   | z= 2                 | (>2 vertikale Anordnung) |
| Mindestwassermenge Qmin        | i = 0,007            | m³/s                     |
| spezifische Drehzahl nq        | = 114,4              | U/min                    |
| Frequenz                       | f= 50,00             | Hz                       |
| Generator Polzah               | l= 2                 | 2 bis 8 Polpaare         |
| Nenn-Drehzahl                  | n= <b>1500</b>       | U/min                    |
| Nenn-Drehzahl                  | 1= 25,00             | U/s                      |
| Beiwert ku                     | o= 0,52              |                          |
| Durchgangsdrehzahl nma         | x= <b>2850</b>       | U/min                    |
| Austrittsgeschwindigkeit v     | i= 90,7              | m/s                      |
| Umfangsgeschwindigkeit         | ı= <mark>86,2</mark> | m/s                      |
| Umdrehungsgeschwindigkeit u    | 3= <b>47,4</b>       | m/s                      |
| Laufraddurchmesser D           | )=                   | m                        |
| Schalenzentrumsdurchmesser D   | l= <b>0,557</b>      | m BAK                    |
| Strahlkreisdurchmesser I       | 0,549                | m                        |
| Becherbreite B                 | 2= 0,052             | m                        |
| Düsendurchmesser D             | e= 0,021             | m                        |
| Strahldurchmesser d            | o= 0,017             | m                        |
| Turbinengehäusedurchmesser Lp, | /= 1,970             | m l                      |
| Turbinengehäusebreite Lp,      | n= <b>0,432</b>      | m a acto                 |
| Freihang h                     | l= <b>0,789</b>      | m m dsle                 |
| Prüfung D/d <sub>p</sub> >     | 9? 32,3              | PORTO                    |
| Prüfung D1/B2>2,               | 7? 10,6              |                          |

ABBILDUNG 10: ABSCHÄTZUNG HYDRAULIK PELTONMASCHINE



#### Technische Kenndaten des neuen Generators:

| TWKW Steindorf          |            |
|-------------------------|------------|
| Drehstromgenerator:     | Synchron   |
| Spannung                | 500 V      |
| Frequenz                | 50 Hz      |
| Leistung                | 160 kVA    |
| Generator-Nenndrehzahl: | 1500 U/min |
| Inselfähig              | ja         |

Die Stromableitung erfolgt über die im Hochbehälter bereits befindliche Stromleitung. Eine allfällig notwendige Netzverstärkung wurde kostenmäßig nicht mitberücksichtigt.

| Maßnahme 3   | Leittechnik                                                                                                                                             |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ursache      | Neubau                                                                                                                                                  |
| IST-Zustand  | Keine Pegelüberwachung der Quellstube,<br>aber Fernüberwachung Entsäuerungsan-<br>lage VZ West Mitte                                                    |
| SOLL-Zustand | Pegelüberwachung Quellstube, Fern-<br>Bedienung und -Überwachung durch<br>Fernwartung, automatisierte Netzsyn-<br>chronisierung, automatisierter Bypass |
| Umsetzung    | Schaltschrank, Datenleitung, Stromabfuhr                                                                                                                |
| Erfolg       | Verfügbarkeit der Anlage > 340 Tage                                                                                                                     |
| Kosten       | Schätzung € 65.000                                                                                                                                      |



#### Beschreibung neue Leittechnik/Kraftwerk:

| TWKW Steindorf    |                                   |
|-------------------|-----------------------------------|
|                   |                                   |
| Pegelsteuerung    | Ja                                |
| Synchronisierung  | Automatisch über Strahlablenker   |
|                   | bzw. Düsennadel, automatische     |
|                   | Wiederzuschaltung                 |
| Störungsmeldung   | Über Mobiltelefon                 |
| Fernzugriff       | ja                                |
| Leistungsschalter | 400 A                             |
| Messgeräte        | Strom, Spannung, Frequenz, Leis-  |
|                   | tung, Netzüberwachung             |
| Schutz            | Kurzschluss Schutz, Überlastungs- |
|                   | schutz, Über- Unterspannungs –    |
|                   | und Frequenzüberwachung, Erd-     |
|                   | schluss Überwachung, Nullspan-    |
|                   | nungsauslösung am Generator       |







ABBILDUNG 11: PLATZ FÜR TURBINENAUFSTELLUNG IN ENTSÄUERUNGSANLAGE VZ WEST MITTE



## 3.2. ENGPASSLEISTUNG NACH UMSETZUNG

| TWKW Steindorf                      |                   |
|-------------------------------------|-------------------|
| Turbinentyp                         | zweidüsige Pelton |
| Verlusthöhe HV= [m]                 | 44,52             |
|                                     | ,                 |
| Netto-Fallhöhe: HN = [m]            | 411,94            |
| Nenndurchfluß: $Q_t = [I/s]$        | 40                |
| Generator-Nenndrehzahl: n=[min-1]   | 1.500             |
| Wirkungsgrad Turbine (bei Qt) in %  | 0,92              |
| WirkungsgradGenerator (bei Qt) in % | 0,94              |
| Rechnerische Engpassleistung am     | 139,79            |
| Generator in kW                     |                   |

# 3.3. REGELARBEITSVERMÖGEN NACH UMSETZUNG

Der rechnerische Nachweis des Regelarbeitsvermögens wird in folgender Berechnung erbracht:





Seite 26 von 31

| EINGABEDATEN              |                   |                 |                 |                 |                 |                 |                 |                 |                 |                |                |                                            |                  |
|---------------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------|----------------|--------------------------------------------|------------------|
|                           |                   | MAX             |                 |                 |                 |                 |                 |                 |                 |                |                |                                            | MIN              |
| Abfluss                   | [l/s]             | 55,89           | 38,71           | 37,11           | 36,97           | 34,04           | 33,41           | 23,76           | 22,45           | 17,16          | 16,44          | 14,88                                      | 12,99            |
| Überschreitungstage       | [d]               | 20,00           | 60,00           | 90,00           | 120,00          | 150,00          | 180,00          | 210,00          | 240,00          | 270,00         | 304,00         | 334,00                                     | 365,00           |
| Frachten (Rohdaten)       | [m <sup>3</sup> ] | 96.569          | 133.782         | 96.199          | 95.829          | 88.221          | 86.604          | 61.576          | 58.190          | 44.466         | 48.294         | 38.564                                     | 34.779           |
| Frachten (angepasst)      | [m <sup>3</sup> ] | 98.631          | 136.638         | 98.254          | 97.875          | 90.105          | 88.453          | 62.890          | 59.433          | 45.415         | 49.325         | 39.387                                     | 35.522           |
| Abfluss (angepasst)       | [l/s]             | 57              | 40              | 38              | 38              | 35              | 34              | 24              | 23              | 18             | 17             | 15                                         | 13               |
| Dotationswassermenge      | [l/s]             | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 0              | 0              | 0                                          | 0                |
| Wirkungsgrad Turbine      | ŋ                 | 0,920           | 0,920           | 0,920           | 0,920           | 0,920           | 0,920           | 0,900           | 0,900           | 0,880          | 0,880          | 0,880                                      | 0,880            |
| Wirkungsgrad Generator    | ŋ                 | 0,940           | 0,940           | 0,940           | 0,940           | 0,940           | 0,940           | 0,940           | 0,940           | 0,920          | 0,920          | 0,920                                      | 0,920            |
| Wirkungsgrad Gesamt       | ŋ                 | 0,86            | 0,86            | 0,86            | 0,86            | 0,86            | 0,86            | 0,85            | 0,85            | 0,81           | 0,81           | 0,81                                       | 0,81             |
| mittlerer Rohrdurchmesser | [mm]              |                 | 150,0           |                 |                 |                 |                 |                 |                 |                |                | 2350                                       | 100              |
| Jährliches Mittelwasser   | [l/s]             |                 | 28,6            |                 |                 | Jahreswa        | serfracht       | soll            | 901.930         | m <sup>3</sup> |                | 650                                        | The same         |
| Ausbauwassermenge         | [l/s]             |                 | 40,0            |                 |                 |                 |                 | ist             | 883.073         | m <sup>3</sup> |                |                                            |                  |
| Druckrohrlänge            | [m]               | 1093,0          |                 |                 | Wasserve        | rluste          |                 |                 |                 |                |                |                                            |                  |
| Rohfallhöhe               | [m]               | 456,46          |                 |                 | QDOT, MIN       | 0               | l/s             |                 |                 |                | 85 AV          |                                            |                  |
| Rauhigkeit [kS]           | [m]               |                 | 0,0001          |                 |                 | Qdot,max        | 0               | l/s             |                 |                |                | STAN AND AND AND AND AND AND AND AND AND A |                  |
| Viskosität                | [n]               |                 | 1,42E-06        |                 |                 |                 |                 |                 |                 |                |                |                                            | $\mathbf{D}^{r}$ |
| Verluste                  | [i]               |                 | 2,94E+01        |                 |                 |                 |                 |                 |                 |                |                | 100                                        |                  |
|                           |                   |                 |                 |                 |                 |                 |                 |                 |                 |                |                |                                            |                  |
|                           |                   | MAX             |                 |                 |                 |                 |                 |                 |                 |                |                |                                            | MIN              |
| Nutzwasser                | [l/s]             | 40              | 40              | 38              | 38              | 35              | 34              | 24              | 23              | 18             | 17             | 15                                         | 13               |
| Überwasser                | [l/s]             | 17              | 0               | 0               | 0               | 0               | 0               | 0               | 0               | 0              | 0              | 0                                          | 0                |
| Rohfallhöhe               | [m]               | 456,46          | 456,46          | 456,46          | 456,46          |                 | 456,46          |                 | 456,46          | 456,46<br>9,09 | 456,46         | 456,46                                     | 456,46           |
| Druckverlust<br>Druckhöhe | [m]               | 44,52<br>411,94 | 43,52<br>412,94 | 40,10<br>416,36 | 39,81<br>416,65 | 33,91<br>422,55 | 32,71<br>423,75 | 16,94<br>439,52 | 15,20<br>441,26 |                | 8,38<br>448,08 | 6,93<br>449,53                             | 0,00<br>456,46   |
| Leistung                  | [kW]              | 139,79          | 138,51          | 133,89          | 133,47          | 124,62          | 122,68          | 88,50           | 83,97           | 62,25          | 59,75          | 54,25                                      | 48,08            |
| RAV                       | [kWh]             | 67.100          | 133.583         | 98.064          | 96.253          | 92.913          | 89.027          | 76.026          | 62.091          | 52.641         | 49.780         | 41.042                                     | 38.067           |
|                           |                   |                 |                 |                 |                 |                 |                 |                 |                 |                |                |                                            |                  |
|                           |                   |                 |                 |                 |                 |                 |                 |                 |                 |                |                |                                            |                  |

Jahresarbeitsvermögen (gerundet)

897 [MWh/a]

asteenergy

## 3.4. FESTSTELLUNG DER ENGPASS-LEISTUNG UND DES REGELARBEITS-VERMÖGENS

Auf Basis der dargestellten Erhebungen und Berechnungen ergeben sich im Konsensbetrieb folgende rechnerischen Werte für die Engpassleistung und das Regelarbeitsvermögen:

| TWKW Steindorf                                         |         |
|--------------------------------------------------------|---------|
| Engpassleistung nach Umsetzung in kW bei<br>Qt= 40 l/s | 139,79  |
| Regelarbeitsvermögen nach Umsetzung in kWh/Jahr        | 897.000 |
| Jahresvolllaststunden in h                             | 6.417   |

### 3.5. SCHLUSSFOLGERUNG

#### **SCHLUSSFOLGERUNG FÜR TWKW Steindorf**

Nach Umsetzung aufgelisteter Maßnahmen kann die Engpassleistung mit 140 kW und das Regelarbeitsvermögen mit rund 900.000 kWh/a angenommen werden.



# 3.6. FÖRDERMÖGLICHKEITEN UND WIRTSCHAFTLICHKEIT

Die Neuerrichtung und Revitalisierung einer Wasserkraftanlage mit einer Engpassleistung bis 2 MW kann durch Investitionszuschuss gefördert werden, mit Ausnahme von Gewässerstrecken mit sehr gutem ökologischen Zustand liegen (durchgehenden Länge von mindestens einem Kilometer mit sehr guten hydromorphologischen Zustand) bzw. in Schutzgebieten (Natura 2000, Nationalpark).

Die Höhe des Investitionszuschusses ist durch Verordnung festzulegen, wobei die Förderhöhe mit 30% des unmittelbar für die Neuerrichtung oder Revitalisierung der Anlage erforderlichen Investitionsvolumens (exklusive Grundstück) begrenzt ist. In allen Fällen darf die Höhe des Investitionszuschusses nicht mehr als 45% der umweltrelevanten Mehrkosten betragen. Die Anlage ist innerhalb von 36 Monaten nach Abschluss des Fördervertrages in Betrieb zu nehmen.

Grundsätzlich kann zwischen einer Investitionsförderung und einer Tarifförderung gewählt werden.

#### Investitionsförderung nach EAG

Investitionszuschüsse werden nach Maßgabe der jeweiligen Reihung und unter Voraussetzung der vorhandenen Fördermittel gewährt und ausbezahlt. Revitalisierungsprojekte für Wasserkraftanlagen gemäß § 56a Abs. 1 EAG (Engpassleistung bis 2 MW) werden im Jahr 2023 mit

2.550 Euro/kW zusätzlich geschaffene Engpassleistung

gefördert.

#### Tarifförderung nach EAG

Die Marktprämie gleicht die Kosten der Stromproduktion aus erneuerbarer Energie und dem durchschnittlichen Marktpreis an der Strombörse aus. Die Marktprämie erhält (direkt) vermarkteter und in das öffentliche Netz eingespeister Strom, für welchen Herkunftsnachweise (HKNs) ausgestellt werden. Sie



löst damit die festen Einspeisetarife aus dem Ökostromgesetz (ÖSG) 4012 ab und folgt dem Prinzip der Direktvermarktung, indem sie alle Anlagen über 500 kW in die Pflicht der Vermarktung nimmt.

Die Marktprämie ergibt sich aus der Differenz des anzulegenden Werts und dem je nach Energieträger festgestellten Referenzmarktwert (RMW). Der Referenzmarktwert wird zum Ende eines Quartals für das vorangegangene Quartal von der Regulierungsbehörde veröffentlicht.

Gemäß § 13 Erneuerbaren-Ausbau-Gesetz (EAG) hat die Energie-Control Austria am Beginn jedes Monats den Referenzmarktwert für jede Technologie gemäß § 11 Abs. 3 des vergangenen Monats zu berechnen und zu veröffentlichen.

Der Referenzmarktwert entspricht einem Preismittelwert, welcher auf Basis der jeweiligen stündlichen Erzeugungsmenge gewichtet wird. Als Preisreferenz werden hierfür die Stundenpreise der Day-Ahead-Marktkopplung der österreichischen Gebotszone herangezogen. Die anzulegenden Werte für Wasserkraftanlagen gem. EAG-Marktprämienverordnung 2024, Fassung vom 14.03.2024 sind wie folgt:

"(1) Die Höhe der anzulegenden Werte in Cent pro kWh für die Berechnung der auf Antrag gewährten Marktprämie für neu errichtete, erweiterte und revitalisierte Wasserkraftanlagen wird für die Antragstellung in den Kalenderjahren 2024 und 2025 gemäß § 47 Abs. 1 und 2 EAG wie folgt festgelegt:

| für neu errichtete und erweiterte Anlagen                          |                 |
|--------------------------------------------------------------------|-----------------|
| a) für die ersten 500 000 kWh                                      | 20,40 Cent/kWh; |
| b) für die nächsten 500 000 kWh                                    | 14,10 Cent/kWh; |
| c) für die nächsten 1 500 000 kWh                                  | 13,79 Cent/kWh; |
| d) für die nächsten 2 500 000 kWh                                  | 11,88 Cent/kWh; |
| e) über 5 000 000 kWh hinaus                                       | 13,00 Cent/kWh; |
| 2. für neu errichtete Anlagen unter Verwendung eines Querbauwerkes |                 |
| a) für die ersten 500 000 kWh                                      | 18,95 Cent/kWh; |
| b) für die nächsten 500 000 kWh                                    | 13,13 Cent/kWh; |
| c) für die nächsten 1 500 000 kWh                                  | 12,84 Cent/kWh; |
| d) für die nächsten 2 500 000 kWh                                  | 11,08 Cent/kWh; |



| e) über 5 000 000 kWh hinaus                                              | 12,08 Cent/kWh;     |
|---------------------------------------------------------------------------|---------------------|
| 3. für revitalisierte Anlagen mit einer Engpassleistung bis 1 MW (nach Ro | evitalisierung) und |
| a) einem Revitalisierungsgrad bis 60%                                     |                     |
| aa) für die ersten 500 000 kWh                                            | 8,69 Cent/kWh;      |
| bb) für die nächsten 500 000 kWh                                          | 7,64 Cent/kWh;      |
| cc) für die nächsten 1 500 000 kWh                                        | 6,59 Cent/kWh;      |
| dd) über 2 500 000 kWh hinaus                                             | 5,00 Cent/kWh;      |
| <ul> <li>b) einem Revitalisierungsgrad von über 60% bis 200%</li> </ul>   |                     |
| aa) für die ersten 500 000 kWh                                            | 10,87 Cent/kWh;     |
| bb) für die nächsten 500 000 kWh                                          | 10,43 Cent/kWh;     |
| cc) für die nächsten 1 500 000 kWh                                        | 10,16 Cent/kWh;     |
| dd) über 2 500 000 kWh hinaus                                             | 9,26 Cent/kWh;      |
| c) einem Revitalisierungsgrad von über 200%                               |                     |
| aa) für die ersten 500 000 kWh                                            | 14,71 Cent/kWh;     |
| bb) für die nächsten 500 000 kWh                                          | 13,07 Cent/kWh;     |
| cc) für die nächsten 1 500 000 kWh                                        | 11,25 Cent/kWh;     |
| dd) über 2 500 000 kWh hinaus                                             | 5,25 Cent/kWh;      |
| 4. für revitalisierte Anlagen mit einer Engpassleistung über 1 MW (nach 1 | Revitalisierung)    |
| a) für die ersten 5 000 000 kWh                                           | 15,33 Cent/kWh;     |
| b) für die nächsten 20 000 000 kWh                                        | 14,24 Cent/kWh;     |
| c) für die nächsten 20 000 000 kWh                                        | 11,01 Cent/kWh;     |
| d) über 45 000 000 kWh hinaus                                             | 12,75 Cent/kWh."    |

Im vorliegenden Projekt kommt der Unterpunkt 1a zur Anwendung.

#### Wirtschaftlichkeitsberechnung

Die Wirtschaftlichkeitsberechnung erfolgt unter der Berücksichtigung der zu erwartenden Betriebs- und Wartungskosten und einer langfristigen Marktprämie gemäß EAG-Marktprämienverordnung bei Annahme einer weitgehenden Eigenfinanzierung, jedoch ohne Berücksichtigung der Verzinsung des Eigenkapitals mit folgender Formel:

$$i \ [\%] = \frac{Erl \ddot{\circ}s - Betriebskosten}{relevante\ Kosten} = Zinssatz\ \%\ p.\ a.$$

Untenstehend wird die Wirtschaftlichkeit der vorgeschlagenen Maßnahmen berechnet, wobei der aktuelle Erlös bzw. Bestand unberücksichtigt bleibt. Darüber hinaus ist von deutlich geringeren Betriebs- und Wartungskosten auf Grund des neuen Maschinensatzes auszugehen. Des Weiteren wird eine vollständige Eigenfinanzierung angenommen und die Verzinsung des Eigenkapitals nicht berücksichtigt:

| Maßnahme         | RAVSteigerung<br>[kWh/a] | InvestKosten<br>[€] | Mehrerlös<br>[€] | Betriebs<br>+/-kosten<br>[€] | Zinssatz p.a.<br>[%] |
|------------------|--------------------------|---------------------|------------------|------------------------------|----------------------|
| Druckrohrleitung | 400.000                  | 300.000             |                  |                              |                      |
| Turbine Neu      | 500.000                  | 175.000             |                  | -                            |                      |
| Generator        | -                        | 45.000              |                  | -                            |                      |
| Leittechnik      | -                        | 65.000              |                  |                              |                      |
| Planung          | -                        | 28.000              |                  | -                            |                      |
| SUMME            | 900.000                  | 613.000             | 158.400          | -                            | 26%                  |



<u>Hinweis:</u> Das vorliegende Vorprojekt ist noch nicht mit der Behörde oder mit ausführenden Firmen abgestimmt! – Aus dem Titel dieser Abstimmungen und Vorgaben kann es zu entsprechenden Projektveränderungen und Veränderungen in der Wirtschaftlichkeit kommen.

## 4. DER PROJEKTANT

Krumpendorf am Wörthersee , am 28.05.2024



DI Christoph ASTE, MSc

Ingenieurbüro für Erneuerbare Energie, Forst- und Holzwirtschaft

Schlossallee 27

A-9401 Krumpendorf am Wörthersee

Mobil: +43 (0)664 3823812

E-Mail: office@asteenergy.at

.www.asteenergy.at



